

Date Planned ://	Daily Tutorial Sheet-12	Expected Duration : 30 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

 $H_3BO_3 + C$

(E)

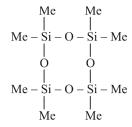
Identify correct statement.

- (A) C is a weak Lewis acid
- **(B)** B is a weak Lewis base

(C) C is a strong acid

- (D) D reacts with NaOH to produce C
- 142. When B_2H_6 reacts with NaOH it produces a colourless combustible gas and another compound 'B' Select incorrect statement about 'B'.
 - (A) Its aqueous solution turns red litmus blue
 - **(B)** It shows anionic hydrolysis
 - (C) It shows cationic hydrolysis
 - (D) It can also be produced by the reaction of boron with NaOH
- Amorphous boron is extracted from borax by following step 143.

 $\operatorname{Borax} \xrightarrow{\quad (A)\quad} \operatorname{H}_3 \operatorname{BO}_3 \xrightarrow{\quad \operatorname{Heat}\quad} \operatorname{B}_2 \operatorname{O}_3 \xrightarrow{\quad (B)\quad} \operatorname{Boron}$


Then (A) and (B) are:

- (A) H₂SO₄, CO
- HCl, Carbon (C) **(B)**
 - H_2SO_4 , Mg
- (D) HCl, Fe
- 144. The role of addition of Me_3SiCl during the hydrolysis followed by condensation of Me_2SiCl_2 is:

- (A) To catalyte the reaction
- **(B)** To terminate the chain and hence controlling the molecular weight
- (C) For obtaining a proper cross linking
- (D) All of the above
- 145. Given type of silicones are called [P]

[P] is prepared by controlled hydrolysis of [Q]. [P] & [Q] are respectively:

- (A) Linear silicone, CH₃SiCl₃
- **(B)** Branched silicone, $(CH_3)_3$ SiCl
- Cyclic silicone, $(CH_3)_2SiCl_2$ (C)
- (D) Cyclic silicone, CH₃SiCl₃
- The silicates anion in the mineral kinoite is a chain of three SiO_4 tetrahedral, that share corners with 146. adjacent tetrahedral. The charge of the silicates anion is :
 - (A)
- (B) -8
- (C) -6
- (D) -2